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The symmetric broadening of the water relaxation peak in polymer–water
mixtures and its relationship to the hydrophilic and hydrophobic
properties of polymers
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The dielectric relaxation of water molecules in polymer–water mixtures is discussed. The memory
function approach and scaling relationships are used as a basis for the model of symmetric dielectric
spectrum broadening. The correspondence between the relaxation time, the geometrical properties,
the self-diffusion coefficient, and the Cole–Cole exponent is established. The relationship between
the hydrophilic and hydrophobic properties of the polymers and the dielectric relaxation parameters
is discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1471551#
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I. INTRODUCTION

An extensive study of water and its interaction with t
interface has attracted much attention recently. Substa
progress has been made in unraveling the inherent comp
ties of water–substrate interactions, with most of the att
tion focused on water in biopolymers, synthetic polyme
and amphiphilic systems.1 It is now well known that the
physical properties of water molecules near surfaces~be they
inorganic or organic, as in surfactant-based systems! differ
measurably from those of bulk water molecules. This obs
vation underlies the distinction between ‘‘bound’’ and ‘‘free
water. The principal dielectric relaxation peak of water e
hibits the Debye-type relaxation curve2–7 in spite of the com-
plexities of hydrogen-bonding liquids on the molecular lev
The relaxation curve of water has been considered to be
to the hydrogen-bonding network structure constructed
water molecules behaving as large clusters.8–10 The relax-
ation of the large clusters occurs via the Brownian diffus
process, i.e., this process requires many individual step
molecular reorientation. Furthermore, water shows ano
relaxation process at a frequency of about one order of m
nitude higher than that of the principal relaxation4–7 fre-
quency. This relaxation process was thought to be cause
the flipping motion of free OH groups between two accep
sites and/or the breaking and reforming of a given hydro
bond in a translational motion.4–11

For water in mixtures of organic materials, the shape
the relaxation curve of the water depends on the molec
size of the solute.12–20 The primary dielectric relaxation o
water in mixtures with small organic compounds exhibits
broad and asymmetric relaxation curve.12–17 This relaxation
behavior can be interpreted from the cooperative motion
water and solute molecules.15,16On the other hand, the relax
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ation process of water in the water mixture of a rando
coiled polymer shows a symmetric relaxation curve.16–20The
relaxation time and width of the dielectric spectrum i
creases with increasing polymer concentration. In
polymer–water mixture, the polymer chain is too large
move cooperatively with water molecules. The polym
chain behaves as a geometric constraint for rotational mo
of water molecules and their movement is strongly hinde
by the polymer chain. The variations of conformations
random-coiled polymer induce variation in the local structu
of water, which yields the symmetric relaxation curve.15,16,18

In order to discuss the relationship between the polym
structure and the dynamical feature of the water in
polymer–water mixture, dielectric relaxations of water f
seven kinds of polymer–water mixtures were observed.18 All
the relaxation curves show the symmetric relaxation
scribed by the Cole–Cole equation.21 The symmetrical
broadening of the dielectric spectrum was phenomenolo
cally interpreted by the variation of the local structure
water.18 Plots of the relaxation times against the paramet
for the symmetrical broadening of the relaxation curve c
be classified into two groups of polymer structures: hyd
phobic polymers and hydrophilic ones. The hydropho
polymer group contained nonelectrolyte polymers and
hydrophilic polymer group mainly contained electroly
polymers. The relaxation curve for the latter group is broa
than that of the former, when compared at the same re
ation time. This result was interpreted to indicate that
water structure in the mixtures of the hydrophobic polym
was uniform and stable than that in the mixtures of the
drophilic polymers. In this paper, we will present the mod
that explains the experimental observation mention
above18 and which establishes that the relationship betwe
the relaxation time, the geometrical properties, the s
diffusion coefficient, and the Cole–Cole exponent of the w
ter relaxation peaks in polymer–water mixtures.
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II. EXPERIMENTAL PROCEDURE

The polymers investigated in this work were poly~vi-
nylpyrrolidone! ~PVP; average molecular weight Mw
510 000!, poly~ethylene glycol! ~PEG; Mw58000!, poly-
~ethylene imine! ~PEI; Mw5500 000!, poly~acrylic acid!
~PAA; Mw55000!, poly~vinyl methyl ether! ~PVME; Mw
590 000!, poly~allylamine! ~PAlA; Mw510 000!, and poly-
~vinyl alcohol! ~PVA; Mw577 000!. Water used in this ex-
periment was distilled and deionized by milli-Q~MILLI-
PORE Co., Ltd.!. Water mixtures of these polymers we
prepared in the concentration range from 10 wt % to 20–
wt % of polymer. Dielectric measurements of the polyme
water mixtures were performed in a frequency range fr
300 MHz to 10 GHz at 25 °C, employing the method of tim
domain reflectometry~TDR!. The sample preparations18 and
the procedures for the dielectric measurement22,23 have al-
ready been reported.

III. THE MODEL

The complex dielectric permittivity«* (v) for the Cole–
Cole process is represented in the frequency domain as

«* ~ iv!5«`1
«s2«`

11~ ivt!a , ~1!

wherev is the cyclic frequency,i is the imaginary unit, 0
,a<1 is the phenomenological so-called Cole–Cole ex
nent,«` is the high-frequency limit of the complex dielectr
permittivity «* (v), «s is the static dielectric permittivity,
and t is the relaxation time.21 The specific case of Eq.~1!
with a51 is correspondent to Debye’s relaxation, while
,a,1 represents the symmetric broadening of the rel
ation peak.

One of several arguments that can explain the n
Debye relaxation is the memory effect.24–31 In this case, the
normalized dipole correlation functionf (t) corresponding to
a nonexponential dielectric relaxation process obeys
equation

d f~ t !

dt
52E

0

t

m~ t2t8! f ~ t8!dt8, ~2!

wherem(t) is the memory function andt is the time variable.
In the case of dielectric relaxation,f (t) can be considered a
a dipole correlation function. The specific form of th
memory function is dependent on the characteristics of in
action between the relaxing system and the statist
reservoir.30,31

In the frequency domain, after a Laplace transform32 Eq.
~2! reads as

zF~z!2152M ~z!F~z!, ~3!

where z is the Laplace parameter,F(z) and M (z) are
Laplace images off (t) and m(t). Thus, after some simple
algebra combining~1! with ~3! and taking into account the
relationship between the complex permittivity and the cor
lation function,33 @«* (z)2«`#/(«s2«`)512zF(z), one
can obtain the Laplace image of the memory function for
Cole–Cole process as follows:
Downloaded 19 Jul 2005 to 129.2.68.73. Redistribution subject to AIP 
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M ~z!5z12at2a. ~4!

The mathematical implication is thatM (z) in ~4! is a multi-
sheet function32 of complex variablez. In order to represen
this function in time domain one should select the schli
domain using supplementary reasons. These computati
constraints can be avoided by using Riemann–Liouville fr
tional differential operator.34,35By defining the fractional dif-
ferentiation operator 0Dt

12a , we have 0Dt
12a@ f (t)#

ªz12aF(z)2C, whereC50Dt
2a@ f (t)#u t510 is a constant

which is dependent on the initial condition,0Dt
2n@g(t)#

5@G(n)#21*0
t (t2t8)n21g(t8)dt8 is the Riemann–Liouville

fractional integration operator (0,n<1), 0Dt
g@g(t)#

5(d/dt)D0
g21@g(t)# is the Riemann–Liouville fractiona

derivation operator (0,g<1), ‘‘ª’’ denotes the Laplace
transformation, andG~n! is the gamma function. Thus, Eq
~3! with the memory function~4! in time domain can be
rewritten as follows:

d f~ t !

dt
52t2a

0Dt
12a@ f ~ t !#1C. ~5!

Note that the constantC can be easily obtained from thi
equation. In fact, the relationship between the complex s
ceptibility and the correlation function, together with Eq.~1!
and ~5!, leads directly to the requirement thatC50.

This equation was already discussed24–27,36as a phenom-
enological representation of the dynamic equation for
Cole–Cole law. The convolution of fractional deferential o
erator in Eq.~5! shows that this equation can be regarded
consequence of the memory effect. A comprehensive dis
sion of the memory function~4! properties was already
presented.24–26Accordingly, Eq.~5! holds for some coopera
tive domain and describes the relaxation of an ensembl
microscopic units. Each unit has its own microscop
memory functionmd(t), which describes the interaction be
tween this unit and the surroundings~interaction with the
statistical reservoir!. The main idea of such an interactio
suggests24–26 that md(t);( id(t i2t) @see Fig. 1~a!#. It re-
flects the interrupted interaction between the relaxing u
and its neighbors. The time momentst i ~the time position of
the delta functions! are the moments of the interaction~re-
laxation acts!. The works24–26 imply that the sequence oft i

constructs a fractal set~the Cantor set for example! with a
fractal dimension 0,df<1. This statement is related to th
idea that cooperative behavior provides some ordering
long-lasting scaling of relaxation process. Following the
assumptions, the memory functionm(t) for a cooperative
domain can be obtained as a result of averaging over
ensemble ofmd(t) @see Fig. 1~b!, where for more convenien
representationI (t)5*0

t m(t8)dt8 is plotted instead ofm(t)#.
The requirements of measure conservation24,26 in the interval
@0, 1/z# and conservation of the fractal dimensiondf for all
md(t) give this averaging as

m~ t !5E
21/2

1/2

md~z2ut !z2u~12df !du,

and

M ~z!;z12df . ~6!
license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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These requirements are direct consequences of the idea
all microscopic units are equivalent. In general, not only
fractal structure of events, but other physical reasons
determine the power-law time dependence of the ma
scopic memory function~6!. For example, the model37 de-
scribes the scaling of dynamic coefficients~microelastic
stiffens and viscosity! that leads to the power-law asymptot
frequency dependency of complex modulus in polymers.

According to the averaging procedure~6! the memory
function~4! is a cooperative one and the Cole–Cole behav
appears on the macroscopic level after averaging over
ensemble of microscopic dipole active units. Comparing~4!
and~6!, one can establish thata5df . This result once again
highlights the fact that in this model the fractal properties
a microscopic level can induce the power-law behavior
memory functions~4! and Cole–Cole permittivity~1! on a
macroscopic level.

By definition,38 the fractal dimension is given by

df5a5
ln~N!

ln~j!
. ~7!

Here, the scaling parameterj is the dimensionless time in
terval size andN is the number of delta functions~relaxation
acts! in the interval. However, a characteristic time const
of the Cole–Cole process is the relaxation timet. Thereby,
the scaling parameterj and the relaxation time should b
proportional to each other

j5
t

t0
, ~8!

where the constant minimalt0 is the cutoff time of the scal-
ing in time.

There is a computer simulation proof39 that an anoma-
lous relaxation on a fractal structure exhibits a Cole–C

FIG. 1. ~a! Schematic picture ofmd(t) dependency.t i are the time moments
of the interaction in time that construct a fractal Cantor set with the dim
siondf5 ln 2/ln 3>0.63.~b! Schematic representation that illustrates the a
eraging of m(t) over an ensemble of microscopic units. Here,I (t)
5*0

t m(t8)dt8. Curve 1 corresponds to the cooperative ensemble of a si
microscopic unit witht i distributed by the Cantor set. Curve 2 represents
ensemble of 3 units of the same type. Curve 3—ten units. The curv
corresponds to the 1000 units in ensemble. The last one displays the p
law behaviorI (t);t ln 2/ln 3.
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behavior. Hence, in this work we will assume that t
memory function~6! has its origin in the geometrical self
similarity of the polymer network. Thus, the scaling para
eter N actually is the number of points where the relaxi
units are interacting with the statistical reservoir~i.e., by the
ergodic assumption—the number of relaxation acts on a
croscopic level for a cooperative domain!. The assumption of
geometrical self-similarity of the considered system sugge
that this number is

N5GS R

R0
D dG

, ~9!

wheredG is a spatial fractal dimension of the point set whe
relaxing units are interacting with the surroundings.R is the
size of a sample volume section where movement of
relaxing unit occurs.R0 is the cutoff size of the scaling in th
space or the size of the cooperative domain.G is a geometri-
cal coefficient about unity, which depends on the shape
the system heterogeneity. For instance, the well-known t
dimensional recursive fractal Sierpinski carpet38 has dG

5 ln(8)/ln(3)'1.89,G5)/4'0.43.
In general, the dielectric relaxation can be regarded

rotation of macroscopic dielectric polarization vector
some representative sample volume. It is clear that this r
tion is provided by some microscopic motions including m
bility and transport of individual charge carriers. In the sim
plest case, these microscopic processes can be relate
rotation of independent microscopic dipoles. In gene
however, such an idea does not explain correctly the mec
nism of dielectric relaxation. For example, hopping transp
of charge carriers, dielectric relaxation in polymers or in a
sociated liquids cannot be reduced to the problem of in
pendent microscopic dipole rotation.

The main goal of this research is the study of wa
relaxation in polymer–water mixture. The dispersion of bu
water is observed in microwave frequency range1,2 (;2
•1010 Hz) that is much higher than the relaxation of macr
molecules in aqueous solution (105– 108 Hz) by itself. For
example, the relaxation of local part of macromolecule o
served in the frequency range between 100 kHz–100 M
for the water mixtures23 of PVP and PVME. Therefore, in
our case we assume that the polymer chains are immobi
the frequency interval studied.

The water molecules interact with each other through
hydrogen bonds network. For this reason dielectric rel
ation of bulk water is cooperative and cannot be deriv
from independent microscopic dipoles concept. In this
gard, the tetrahedral displacement model40 of water molecule
dynamics should be mentioned. The model takes into
count the relaxation of macroscopic dipole moment provid
by reorientation of water molecules and their diffusion
multaneously, considering only the collective behavior
water molecules. In our model we will discuss the sing
water molecule behavior and imply that each reorientation
a water molecule is accompanied by its jump to the ot
position. In other words, the relaxation of a water molec
is accompanied by an act of diffusion. Thereby, the mac
scopic relaxation time is the time during which the relaxi

-
-

le
e
4
er-
license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



-

o

f

le

s
n
ili
d
es
s
ili

po
an
le
te
a

th

in
n

ntal
o
r.

e of
ole
ole
ac-
oir,
elf
the
ater

of
on

ties

ly-
dy-
ive
re-
on.
the

at

is-
,
er.
-

gle
nd

ion
the

ter
hat
ic
the

ac-
e
ific
x-

x-
of

er
mi-

f
se-

e
f a
is

ly-
f h

8613J. Chem. Phys., Vol. 116, No. 19, 15 May 2002 Hydrophilic and hydrophobic properties of polymers
microscopic unit would move some distanceR. The
Einstein–Smoluchowski theory41,42gives the relationship be
tweent andR as follows:

R252dEDst, ~10!

whereDs is the self-diffusion coefficient, anddE is the Eu-
clidean dimension. Thus, by substitution of~8!, ~9!, and~10!
into ~7!, one can get the relationship between the Cole–C
parametera and the relaxation timet in the form

a5
dG

2

ln~tvs!

ln~t/t0!
, ~11!

wherevs52dEG2/dGDs /R0
2 is the characteristic frequency o

the self-diffusion process.

IV. RESULTS AND DISCUSSION

The experimental dependencies of the Cole–Co
exponenta versus relaxation timet, together with fitting
curves according to Eq.~11! with three fitting parameters
dG , t0 , andvs for all the samples, are plotted in Fig. 2. A
mentioned above, Fig. 2 shows a remarkable separatio
the experimental curves into two groups. The hydroph
polymer solutions PVA, PAIA, PAA, and PEI are distribute
in one group while the hydrophobic polymer water mixtur
PEG, PVME, and PVP are in another. Note that the curve
the hydrophobic group are above those of the hydroph
group.

According to the presented model the Cole–Cole ex
nent reflects the interaction between the relaxing units
the statistical reservoir. The biggest deviation of the Co
Cole exponent from unity corresponds to the strongest in
action. We can consider that in our case the relaxing units
the water molecules, while the statistical reservoir is
polymer macromolecule. The deviationa from unity for the
hydrophilic group~see Fig. 2! is greater than that of the
hydrophobic one. This indicates that the water–polymer
teraction is more significant for the hydrophilic samples a
thus confirms the concept presented here.

FIG. 2. Cole–Cole exponenta vs relaxation timet. The curves are fitted to
Eq. ~11!. The full symbols correspond to the mixtures of hydrophilic po
mers and water while the open symbols correspond to the mixtures o
drophobic polymers and water.
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Figure 2 also shows that for all samples the experime
curves rise up toa51 at t;8 ps. This point corresponds t
0% of polymer in water and to the relaxation of bulk wate
Increasing the polymer concentration leads to the increas
the relaxation time and to the decrease of the Cole–C
exponent. At the same time, the change of the Cole–C
exponent is an integral effect. When discussing the inter
tion between the relaxation units and the statistical reserv
we are assuming that this interaction includes within its
the interactions of the water molecules with each other in
cooperative domain, the confinement and caging of the w
molecules by the polymer chains, as well as other types
interactions. Caging and confinement in particular depend
the local structure, and for this reason the scaling proper
become central in the consideration.

In the framework of the presented modelR is the size of
the water molecules’ cooperative region affected by the po
mer chains. The structure of the water molecules in this
namic cooperative domain is different from the cooperat
structure of the bulk water. The size of this cooperative
gion grows with the increase of the polymer concentrati
The increase of the polymer concentration results in
growth of the cooperative area sizeR, which consequently
leads to the increase of the relaxation timet. The cooperat-
ivity implies a long-range space correlation; therefore,
nonzero polymer concentrations all the water molecules~at
least all of the water molecules which contribute to the d
cussed relaxation process! are within the cooperative region
whose structure is different from the structure of bulk wat

It is well known2,3 that the macroscopic dielectric relax
ation time of the bulk water~8.27 ps at 25 °C! is about ten
times greater than the microscopic relaxation time of a sin
water molecule, which is about one hydrogen bo
lifetime4–7 ~;0.7 ps!. This fact follows from the associative
structure of bulk water, where the macroscopic relaxat
time reflects the cooperative relaxation process related to
space scale of the cooperative region.

As mentioned above, the water in the polymer–wa
mixture is organized into specific cooperative structures t
are different from that of the bulk water. This microscop
relaxation of water molecules in that pattern depends on
dynamic properties of the cooperativity and rate of inter
tion with a polymer matrix. Different polymers perturb th
bulk water structure in different ways and activate spec
cooperative water domains with different microscopic rela
ation times.

In the framework of our model the microscopic rela
ation time of the water molecule is equal to the cutoff time
the scaling in time domaint0 . For the most hydrophilic
polymer PVA, the strong interaction between the polym
and the water molecule results in the greatest value of
croscopic relaxation timet0 , which is only 10% less than
the macroscopic relaxation time of the bulk water~see Table
I!. Weakening of the hydrophilic properties~or intensifica-
tion of the hydrophobic properties! results in a decrease o
interaction between the water and the polymer and con
quently in a decrease oft0 . The aqueous solution of th
most hydrophobic polymer PVP has the smallest value o
single water molecule microscopic relaxation time, which

y-
license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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almost equal to the microscopic relaxation time of bulk wa
~see Table I!.

The interaction between the water and the polymer m
trix actually occurs in the vicinity of the polymer chains, an
only the water molecules located in this interface are affec
by the interaction. The space fractal dimensiondG in this
case is the dimension of the interface. This quantity is no
direct measure of the polymer chain structure but co
sponds to some specific length scale pertinent to the re
ation process. The generally acknowledged models43 point to
large-scale dimensions of the polymer chains, either 2~in
ideal case of a concentrated solution! or 5/3 ~in a dilute so-
lution in a good solvent!. Nevertheless, one could recogni
that the fitted values ofdG , presented in Table I, fall into the
interval 1,dG,2 and are in good agreement with the valu
mentioned above. In this regard one could consider the v
of dG as a measure of polymer structure at the intermed
scale. Remarkably, according to the data obtained by fitt
the weakening of the hydrophilic property leads to a decre
in dG and probably to the straightening of the polymer cha
~see Table I!.

The presence of a polymer in water affects both rel
ation and diffusion of the solvent. To estimate the se
diffusion coefficient, we can use the following expression

Ds>
vsR0

2

2dE
, ~12!

which directly follows from the definition of the characteri
tic frequency of the self-diffusion processvs . It is assumed
in the last expression that the geometrical factor isG51. In
our case the scaling cutoff size in the space is equal to
size of a water molecule,R0'3 Å. The Euclidean dimension
of the space where the diffusion occurs is the nearest int
number greater than the fractal dimension. Thus,dE52. The
results of the estimation are presented in Table I. Note
the polymer affects only water molecules situated in the
cinity of the polymer chains. This means that the estima
self-diffusion coefficient corresponds only to these wa
molecules and is not dependent on the polymer concen
tion. The averaged self-diffusion coefficient estimated for
whole polymer–water mixture should be different and d
pend on the polymer concentration. This coefficient does
characterize the mixture as a whole but reflects only
water–polymer interaction.

TABLE I. Values of the space fractional dimensiondG , the cutoff time of
scaling in the time domaint0 , the characteristic frequencyvs and the
estimated self-diffusion coefficient for the sample.

Sample dG t0 @ps# vs310211 @Hz# Ds3109 @m2 s21#

PVA 1.5660.09 7.1860.74 1.4760.21 3.31
PAlAa 1.43 6.46 1.74 3.92
PAA 1.1260.17 6.3460.83 2.0860.68 4.68
PEI 1.3360.02 4.8960.45 2.6760.40 6.01
PEG 1.5460.04 4.4560.74 2.7860.63 6.26
PVME 1.3860.10 3.5861.23 4.2462.47 9.54
PVP 1.0060.01 0.7960.11 127634 286

aFor the sample PAlA there are only three experimental points. For
reason it is impossible to determine the mean square deviation value
consequently the confidence intervals for the fitting parameters.
Downloaded 19 Jul 2005 to 129.2.68.73. Redistribution subject to AIP 
r

-

d

a
-
x-

s
ue
te
g,
se
s

-
-

e

er

at
i-
d
r
a-
e
-
ot
e

The self-diffusion coefficient for the bulk water44 at
25 °C is 2.5731029 m2 s21. The presence of a polymer i
the water prevents the bulk water structure formation a
promotes the diffusion. However, the strong interaction
tween polymer and water for hydrophilic samples inhib
the diffusion. From Table I we can see the clear tendency
the diffusion coefficient to increase with a decrease of hyd
philicity. For the most hydrophilic sample PVA the estimat
self-diffusion coefficient is only 30% greater than for th
bulk water, while for the PVP sample it is about two orde
of magnitude higher~see Table I!.

V. CONCLUSION

The main dielectric relaxation peak for bulk water is d
to the cooperative relaxation on the scale of the water m
ecule cluster. Thus, the presence of macromolecules in a
ous solutions changes the water structure and water–w
interactions. The changes depend on the concentration o
impurities as well as on the features of interaction betwe
the water and the macromolecules.

The model was elaborated to establish the relations
between the relaxation time, the geometrical proper
~space fractal dimensiondG!, the self-diffusion coefficient,
and the Cole–Cole exponent. It was shown that the mic
scopic relaxation time of water molecules in the vicinity
the polymer matrix correlates with the hydrophilicity of th
impurities. At the same time, it was observed that the
crease of hydrophobicity of the impurities increases the
fusion of the water molecules in the cooperative doma
near the polymer chains.
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